Aerodynamic Priniciples and Design

In: Science

Submitted By joannem
Words 4168
Pages 17
AERODYNAMIC
PRINCIPLES
AND
AIRCRAFT DESIGN
ASSIGNMENT
AERODYNAMIC
PRINCIPLES
AND
AIRCRAFT DESIGN
ASSIGNMENT

INTRODUCTION
It is really amazing how an aircraft is able to just take off from the ground and fly thousands of miles from place to place. How does it all work, do you ever wonder? Well obviously it’s not magic; it’s mainly because of aerodynamics. And when we talk about aerodynamics, it goes way beyond elevators, rudders, etc. Therefore we go to the depths of aerodynamics and its power to control a massive plane in the air. To be engineering in aerospace we need this extensive knowledge.
In this report, you will learn about how an aircraft moves. The stability and control of the aircraft we also learn the factors influencing the static stability, the static margin and load factors. This report also gives us knowledge about the aircrafts control systems.

| | | 1.1 | Motion of an aircraft | 4 | 1.2 | Degree of freedom | 4 | 2.1 | Static stability | 5 | 2.2 | Static margin | 5 | 2.3 | Dynamic stability | 6 | 3.1 | Stability in an aircraft | 6 | 3.2 | Longitudinal stability | 6 | 3.2.1 | Longitudinal dihedral | 7 | 3.3 | Lateral stability | 7 | 3.3.1 | Dihedral | 7 | 3.3.2 | Sweepback | 8 | 3.3.3 | Keel effect | 8 | 3.4. | Directional stability | 9 | 3.4.1 | sweepback | 9 | 4.1 | Load factor | 9 | 4.2 | Maneuver envelopes | 10 | 4.3 | Constraints on load factor | 10 | 4.4 | Load factors with respect to different maneuvers | 11 | 5.1 | Horizontal stabilizers | 12 | 5.2 | elevators | 12 | 6.1 | Vertical stabilizers | 13 | 6.2 | rudder | 13 | 7.1 | Role of swept back wing | 13 | 8.1 | Role of swept forward wing | 14 | 9.1 | Role of tapered wings | |

Motion of an aircraft #Fig1: Axis of rotation
#Fig1: Axis of rotation
An aircraft in flight is free to rotate in three dimensions.The…...

Similar Documents

Organizational Design

...Organizational Design Tara M. Parker University of Phoenix Managing in Today's Health Care Organizations HCS/514 October 1, 2012 Steven Bonell, MBA, MHA Organizational Design My organization is not-for-profit, community based network comprised of nine facilities. We employ more than 16,000 employees, including physician affiliates. We are dedicated to serving the surrounding communities regardless of ability to pay. The organizational structure includes our volunteer board of directors and the president and chief executive officer. Each of the nine facilities has their own president and vice president as well as administrator, department managers, and team members. The hospitals are divided by specialty and then within each facility, there are divisions according to specialties. Within our functional structure, is a divisional structure. Any director or manager would have difficulty keeping track of all departments under her or his span of control; therefore, there is a director and a separate manager for each department under the director’s span of control. The director is ultimately responsible for the departments, yet each department functions with a certain amount of autonomy. Our president and board are responsible for the performance of the organization as a whole. The executive level team members within each division are responsible for implementing action plans consistent with the organizations’ mission and objectives. The first line managers......

Words: 1201 - Pages: 5

Aerodynamics

...One of the first things that is likely to be noticed during a visit to the local airport is the wide variety of airplane styles and designs. No matter what each looks like they all depend on the same four factors which are lift, weight, thrust, and drag. The direction in which the force of weight acts is constant. It always acts straight down toward the center of the earth (Four Forces on an airplane 1). Lift is the upward force produced by the effect of airflow as it passes over and under the wings. It helps maintain the airplane in flight. Weight opposes lift, it is caused by the downward pull of gravity. Thrust is the forward force which propels the airplane through the air. It varies with the amount of engine power being used. Opposing thrust is drag, which is a backward force that decreases the speed of the airplane (What is Thrust 1). Lift is the key aerodynamic force. It is the force that opposes weight. In straight and level flight when weight and lift are equivalent, an airplane is said to be in a state of equilibrium. If the other aerodynamic factors remain constant, then that airplane neither gains nor loses altitude. Movement of air on the airplane, particularly the wing, is necessary in order for the aerodynamic force of lift to become effective. During flight, however, pressures on the upper and lower surfaces of the wing are not the equal. Although several factors contribute to this difference, the shape of the wing plays an important role. The wing is...

Words: 677 - Pages: 3

Aircraft Design

...Chapter 1 Introduction Standard aircraft design processes have traditionally been divided in the following stages []: * Feasibility studies: design needs to satisfy prescribed performance requirements along with other geographical and cost constraints, * Conceptual design: design on paper or on computer, involves analysis tools covering performance evaluation in different maneuvers, * Preliminary design: laying of proper moulds for building airframes, * Prototype building: finally arriving at a scaled down prototype, * Wind tunnel testing: on the developed prototype for aerodynamics database generation, * Flight testing: * Stability and control augmentation * Certification: requires an airplane to satisfy certain handling and flying qualities requirements. This design process thus have nearly always left the stability and dynamics aspects to the end, where six degrees of freedom of motion are used to evaluate flying and handling qualities of aircraft. Finally, if these criteria do not match with the required satisfaction level of pilot or the industry standards, design of control systems are needed. To our knowledge (due to proprietary nature of the trade) and based on text book information, no analysis tools has been developed in the past for aircraft design which uses six degree of freedom equations of rigid aircraft motion right from the beginning. This is primarily due to the multi-objective iterative nature of the problems one needs......

Words: 681 - Pages: 3

Design

...Tropical Building Design Considerations 1. Naturally comfortable houses are low energy houses 2. Ceiling fans provide low energy cooling if you only use them whilst rooms are occupied 3. Light coloured roofs (or zinc alum) reflect the heat 4. Use orientation and shading to eliminate direct sun on walls 5. Minimise east and west wall areas and avoid windows on east and western walls to prevent low morning and afternoon sun heating up the house 6. Correctly sized eaves can provide permanent shade to north and south windows and walls (northern verandas make sense 7. Plant tall trees on the east and west sides of the house to shade walls 8. Tall trees on north and south shade roof (minimise mid-height foliage to let breeze through for naturally ventilated houses). Consider leaving half roof unshaded if solar panels are to be used Design for Natural Ventilation 1. Use the breeze for cross ventilation through openings in opposite walls and internal partitions 2. Maximise the area of windows (e.g. louvres) that can be opened 3. Orientate house to catch the breeze (whilst still minimising sun on east and west walls) 4. A long narrow floor plan catches the breeze best. 5. Trees and shrubs act to cool the air passing through the house. 6. Don't use exposed concrete on ground immediately outside the house as it heats the air. 7. Roof space ventilation draws the heat out. 8. Dirty flyscreens block more breeze. Consider......

Words: 569 - Pages: 3

Aerodynamics in Cycling

...Aerodynamics in Cycling Aerodynamics has become enormously important in bicycle road racing, even more than weight. Bikes are so light these days that it is not unusual to add weights just to get them up to the required minimum weights. Wind tunnel testing is used extensively both in manufacturing and training. Manufacturers test bikes and components in order to reduce drag. One trend in recent years that I find counter intuitive is wider wheels. Newer rims sometimes have a cross section similar to an airfoil, wide in the front and tapering towards the back, or inside of the wheel. They have also added dimples similar to golf ball dimples. In general, most tube cross sections are now being stretched out to an airfoil like shape. Each little thing does not change much, but put together they can make a huge impact on the effort the rider has to put out in the end. A team manager needs to know how to balance many factors such as aerodynamics, weight, cooling, and strength amongst others. As an example for a race with many steep climbs, aerodynamics is less important than weight and cooling for the rider. Maybe a helmet with many vents and high drag is in order so the rider will not over heat. Light but high drag wheels are also ok. On the other hand, it is opposite during a flat time trial, when the rider rides all alone without any drafting behind other riders. In this situation, everything must be low drag, bike, wheels, suit, helmet etc....

Words: 259 - Pages: 2

Aerodynamics and Aircraft Performance

...Aerodynamics and Aircraft Performance Characteristics of High-speed Flight Embry-Riddle Aeronautical University From the beginning of the age of manned flight, aviators and engineers have continuously sought to increase the performance envelope. Many parameters for defining aircraft performance exist, but here I’d like to focus on going fast. Since I was a child I’ve been fascinated with military aircraft and the pursuit of speed. From the Bell X-1 to the famed SR-71 Blackbird and beyond, high-speed flight has been a chase toward an ever increasing limit. Several factors contribute to the aerodynamics of supersonic flight and many limitations apply as the envelope is pushed. I will focus the perspective of this paper on design characteristics, engine technology, and atmospheric considerations and take a peek into the future of hypersonic flight. In order to discuss the design characteristics of high-speed aircraft, a definition for the speed regimes must be given. Supersonic flight is typically defined as greater than Mach 1 but less than Mach 3. “High” Supersonic flight is a narrow band of operation from Mach 3 to 5 and hypersonic flight is in excess of Mach 5 (Benson, 2013). Shape technology and wing design are the primary areas of concern in setting out to build an aircraft capable of supersonic speeds. If airflow velocities reach sonic speeds at some location on an aircraft further acceleration results in the onset......

Words: 1378 - Pages: 6

Aerodynamic Performance of Biological Airofoils

...2nd Flow Control Conference 28 Jun - 1 Jul 2004 / Portland, Oregon AIAA-2004-2319 Aerodynamic Performance of Biological Airfoils Abel Vargas* and Rajat Mittal† The George Washington University, Washington, D.C., 20052 Experimental studies on static, non-flapping dragonfly wings have shown favorable aerodynamic performance at low Reynolds number (Re ≤ 10,000). High lift is hypothesized to arise from the dragonfly’s pleated wing structure. A numerical study of flow past a modeled dragonfly wing section as well as its comparison to a corresponding profiled airfoil and a flat plate were conducted at Re = 10,000. The main focus of the current investigation was to determine the primary flow features and mechanisms that are responsible for the enhanced performance of these biological wing sections at these relatively low Reynolds numbers. A time-accurate Cartesian grid based Navier-Stokes immersed boundary solver was utilized in the current study. The numerical results indicate that the pleated airfoil at a zero degree angle-of-attack generates the least drag despite its unconventional shape. Additionally, a higher transitory lift is produced by the pleated airfoil at a five degree angleof-attack when compared to the profiled airfoil. Nomenclature c CD CDs CDp CL CLs CLp P Re τ t t* ui = = = = = = = = = = = = = = = = chord length drag coefficient shear drag coefficient pressure drag coefficient lift coefficient shear lift coefficient pressure lift coefficient Pressure......

Words: 4564 - Pages: 19

Design

...policy, current production operations, and identify new business models. This paper provides a background to better understand current trends in this multidisciplinary field that intersect with operations management, and the research opportunities and challenges it presents. # 2007 Elsevier B.V. All rights reserved. Keywords: Supply chain; Sustainability; By-products 1. Introduction The interaction between sustainability and supply chains is the critical next step from recent examinations of operations and the environment (Corbett and Kleindorfer, 2003) and operations and sustainability (Kleindorfer et al., 2005). While important contributions have been made in relation to environmental operations and policy, strategy, finance, product design, supplier relations and post-consumer product management it is critical to move forward to the systemic issues * Corresponding author. E-mail addresses: linton@management.uottawa.ca (J.D. Linton), rklassen@ivey.uwo.ca (R. Klassen), vaidy@miami.edu (V. Jayaraman). 0272-6963/$ – see front matter # 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jom.2007.01.012 that exist at the intersection of sustainability, environmental management and supply chains. This paper gives consideration to both sustainability and supply chains. First, the relationship between these two concepts and previous work on environmental management of operations is considered. Second, new questions and research directions prompted by taking a sustainable......

Words: 4927 - Pages: 20

Design

...User Experience ©Jeff Patton Five topics today: User Experience explained simply and then: Users and modeling what you know about them Usability evaluating & testing it Visual Design guidelines to help visual design to communicate what you intend Emotional Design how do users feel about your software? 2 3 4 User Experience is Built From Dependent Layers Jesse James Garrett’s Elements of User Experience: http://www.jjg.net/elements/ 5 The Surface Layer Describes Finished Visual Design Aspects Surface Skeleton Structure Scope Strategy 6 The Skeleton Describes Screen Layout and Functional Compartments in the Screen Surface Skeleton Structure Scope Strategy 7 Structure Defines Navigation from Place to Place in the User Interface Surface Skeleton Structure Scope modal wizards task panes modal dialogs Strategy 8 The Places in the User Interface are Built to Support User Task-Centric Scope Surface Skeleton Structure Scope Strategy user tasks: • enter numbers • enter text • enter formulas • format cells • sort information • filter information • aggregate information • graph data • save data • import data • export data • print • ….. 9 Business Goals Drive User Constituencies and Contexts Supported To Form Strategy Surface Skeleton Structure Scope Strategy business goals: • displace competitive products • motivate sale of other integrated products • establish file format as default information sharing......

Words: 2870 - Pages: 12

Design

...Chapter 4 Product Design Russell and Taylor Operations and Supply Chain Management, 8th Edition Lecture Outline • • • • • • • Design Process – Slide 4 Rapid Prototyping and Concurrent Design – Slide 11 Technology in Design – Slide 27 Design Quality Reviews – Slide 29 Design for Environment – Slide 33 Quality Function Deployment – Slide 36 Design for Robustness – Slide 45 © 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e 4-2 Learning Objectives • Explain the importance of the product design process and provide an overview of each step of the process • Calculate the reliability and availability of a product or service • Understand the technologies involved in designing new products and their related production processes • Utilize techniques for analyzing design failures and eliminating unnecessary design features • Explain why and how each step of the product lifecycle can be changed for improved environmental stewardship, and provide examples of programs that support green efforts • Use quality function deployment as a design tool © 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e 4-3 Design Process • Effective design can provide a competitive edge • matches product or service characteristics with customer requirements • ensures that customer requirements are met in the simplest and least costly manner • reduces time required to design a new product or service • minimizes revisions necessary to make a design workable © 2014 John Wiley...

Words: 2304 - Pages: 10

Design

...Suliman AlSumairi Dr.Paul Sevensky COMM 598-01 Special Topics Assignment 1 – Analysis of Ad Campaign The Invenergy Campaign ads series convey important messages with basic design layout from my perspective. The photos, fonts, and colors failed to provide an effective example of alignment and proximity. However, it’s more likely hard to reveal the concept of the messages when you look at them for first time. Based on last discussion at the class, the relationships of elements of design to each other and to the total composition play an important role. They help to arrange and enhance the delivery of messages in effective compositions. For instance, Stronger Jessup ad failed to illustrate the relationship between the visual symbol and the text. They have not applied the alignment element, which needs a visual connection. As a result, ignoring any principle will make the design of the advertisement poor. Designing of visual documents and understanding of color importance helps when incorporating it into any design. The reason for the impact is that the colors have deep subliminal meanings that have massive impact on human attention. Choices regarding color should be matched with purpose of messages that try to deliver. Ads should have the colors in them perfectly matching. It is clearly shown in the advertisements. Whenever they run out of color meanings, they use blue and yellow. Color psychology dictates that the appropriate color enhance the environment. Green,......

Words: 896 - Pages: 4

Aerodynamics

...Name: Jeremy Abbott  Date:  April 28, 2016  Module 2­ Aerodynamics from a Management Standpoint  Learning Objective ​......

Words: 340 - Pages: 2

Aerodynamics of Supersonic Aircraft

... Aerodynamics of Supersonic Aircraft Name: Institution: Aerodynamics of Supersonic Aircraft The world over the past three decades has experienced manned aircraft travelling at supersonic speeds. Supersonic aircraft exhibit a much higher propulsion system as opposed to the previous aircraft, therefore, they are more efficient (Winchester, 2008). In this respect, the designer cannot allow this efficiency to drop below the theoretical optimum in spite of the increased complexity and weight. In addition, these types of aircraft have a greater interaction between the airframe and the engine than their previous counterparts. Apparently, it is no longer possible to rationalize between optimizing a propulsion package to a separately optimized airframe (Torenbeek, 2013). The two parts work in tandem and thus they should be fully integrated into all aspects by the designer. Supersonic aircraft refer to those planes that travel at a relatively faster speed compared to that of sound (Gunston, 2008). These types of planes were developed in the mid-twentieth century and had been extensively deployed purely for research and military works. Two types of airlines, namely the Concorde and the A-11/SR-71 aircraft mark the development of a novel class of planes designed purposely for supersonic operation. The most typical example of a supersonic aircraft is the jet fighter, however, it does not travel at a speed that exceeds that of sound. Other examples include the Conair B-58 and XB-70......

Words: 1689 - Pages: 7

Research on Aerodynamic Drag Reduction by Vortex Generators

...Research on Aerodynamic Drag Reduction by Vortex Generators Masaru KOIKE* Tsunehisa NAGAYOSHI* Naoki HAMAMOTO* Abstract One of the main causes of aerodynamic drag for sedan vehicles is the separation of flow near the vehicle’s rear end. To delay flow separation, bump-shaped vortex generators are tested for application to the roof end of a sedan. Commonly used on aircraft to prevent flow separation, vortex generators themselves create drag, but they also reduce drag by preventing flow separation at downstream. The overall effect of vortex generators can be calculated by totaling the positive and negative effects. Since this effect depends on the shape and size of vortex generators, those on the vehicle roof are optimized. This paper presents the optimization result, the effect of vortex generators in the flow field and the mechanism by which these effects take place. Key words: Body, Aerodynamics, Aerodynamic Devices, Flow Visualization, Computational Fluid Dynamics (CFD) 1. Introduction To save energy and to protect the global environment, fuel consumption reduction is primary concern of automotive development. In vehicle body development, reduction of drag is essential for improving fuel consumption and driving performance, and if an aerodynamically refined body is also aesthetically attractive, it will contribute much to increase the vehicle’s appeal to potential customers. However, as the passenger car must have enough capacity to accommodate passengers and......

Words: 3114 - Pages: 13

Aerodynamics of a Football

...When you hear the word aerodynamics, the first thing that comes to mind is airplanes and pilots. There are other applications that apply. For instance, the passing of a football. A football that is thrown into the air has inertia. This is the tendency of an object in motion to remain in motion. But because of gravity the ball is pulled down and resistance that slows the ball down. A quarterback through the motions of his and body, must balance the forward momentum that he gives the ball, fighting gravity and air resistance that pulls and slows it down. Aerodynamics is involved during passing because of the spin that is applied. The better the spin the straighter and further the ball will travel. This is accomplished by the quarterback throwing the football over handed or a sidearm motion to giving it the spin required. The spin causes the ball’s angular momentum points in the direction of its long axis. At same time due to air drag, torque is pointing perpendicular to the angular momentum. The ball travels on a semi-parabolic curve and wind torque produces a small change in the ball’s angular momentum. This allows the ball to continue to turn around its trajectory. Therefore spinning stabilizes the football through angular momentum and torque. Throwing in this manner orientates the ball giving it the smallest possible cross sectional area against the oncoming air; this causes the least amount of aerodynamic drag. This is important for quarterbacks as while as......

Words: 312 - Pages: 2

practice | Shokugeki no Soma 170 | Pink Dolls Rocking Cradle Crib Cot Bed Girls Toy With Mobile, Blanket Pillow